Focus on the
4-H Entomology
Project
Welcome to 4-H Science

This handbook series was developed to help Oregon 4-H youth development professionals and volunteers become familiar with the national 4-H science framework and how to think intentionally about 4-H Science programming. It will help improve the understanding and delivery of science within appropriate 4-H projects.

4-H, with its direct connection to the Cooperative Extension System’s cutting edge research and the resources of the nation’s 106 land-grant universities and colleges, provides youth with hands-on learning experiences that foster exploration, discovery, and passion for the sciences. Science is one of the three national Mission Mandates for 4-H. 4-H Science programs support youth to develop science, technology, engineering and applied math (STEM) skills.

This handbook will

1. Define 4-H Science
2. Introduce tools to focus on 4-H Science in this project area
 a. 4-H Science Checklist
 b. 4-H Science Eight Essential Elements
 c. 4-H Science Inquiry in Action Flowchart
 d. 4-H Science Logic Model
3. Provide An Example of a Science Rich 4-H Inquiry Activity

Adapted and written by Virginia Bourdeau, 4-H Youth Development Professor.

© 2012 Oregon State University 4-H Youth Development

Oregon State University Extension Service offers educational programs, activities, and materials—without discrimination based on race, color, religion, sex, sexual orientation, national origin, age, marital status, disability, or disabled veteran or Vietnam-era veteran status. Oregon State University Extension Service is an Equal Opportunity Employer.
Why 4-H Science?

The National Academy of Science’s 2007 Rising Above the Gathering Storm report stated that, “the United States presently faces a significant challenge - young people are not prepared with the necessary Science Engineering and Technology workforce skills to compete in the 21st century.” In their 2011 review of America’s position five years later, entitled Rising Above the Gathering Storm, Revisited: Rapidly Approaching Category 5, the Academy committee’s unanimous view is that our nation’s outlook has worsened.

The 2009 National Assessment of Educational Program report indicates Oregon 8th grade students are proficient in math (37%) and science (35%) slightly above the national average. However, just 15% of Hispanics and 12% of Black 8th grade students are proficient in math compared to 41% of White students. For science, just 12% of Hispanics and 13% of Black 8th graders are proficient compared to 40% of White students. The percentage of Oregon 8th grade students who reported they “never or hardly ever” design a science experiment was 35%, compared to 39% nationally. The percent of Oregon 8th grade students who report that they “never or hardly ever” write reports on science projects was 43%, compared to 47% nationally.

The national 4-H Science Mission Mandate targets addressing these needs at the local level through the broad range of 4-H projects which are based on science. 4-H Science programs reach more than 5.9 million youth in urban, suburban and rural communities across the country. 4-H Science programs support youth to develop science, technology, engineering and applied math (STEM) skills. Oregon 4-H youth development professionals and volunteers can help address this need using the resources and tools in this handbook.
1. The 4-H Science Checklist

The 4-H Science Checklist is provided in Appendix A. The checklist includes seven items that have been identified as the most critical program components to include in a 4-H Science Program. You may be thinking, “I don’t lead a 4-H Science Club! I’m just an Entomology club leader.” The goal of the checklist is to help 4-H youth development professionals and volunteers identify and reinforce the science learning opportunities across a variety of 4-H projects.

A paragraph at the top of the checklist explains, “A ‘Science Ready’ 4-H experience is a program that is framed in science concepts, based on science standards and intentionally targets the development of science abilities and the outcomes articulated by the 4-H Science Logic Model. Additionally, it integrates the Essential Elements and engages participants in experiential and inquiry based learning.”

Let’s look at what is included in the program components of a “Science Ready” 4-H experience.

- **National Science Education Standards**
 These standards are used by Oregon’s Department of Education to develop the science benchmarks for K-12 education. The national standards provide a common and consistent base of quality content on which 4-H program design, development, delivery and assessment is built.

- **4-H Science Abilities**
 This section includes a list of 30 science abilities or practices that are skills used in science, engineering and technology. These abilities can be used across 4-H project areas to help youth unleash their natural curiosity about the world. Youth will use these skills and understand what it means to think and act like a scientist.

- **Youth Development- Essential Elements**
 Oregon 4-H youth development professionals and volunteers are already addressing these opportunities in their work with youth. The four needs of youth to experience mastery, independence, belonging and generosity are supported by the Eight Essential Elements of Positive Youth Development. Specific examples of how 4-H youth development professional and volunteers can implement these are provided in the 4-H Science: Eight Essential Element chapter 2 in this handbook.

- **Trained, Caring Adults and Volunteers**
 Oregon 4-H youth development professionals and volunteers are provided a variety of opportunities, including this handbook, to increase their skills as front-line youth workers. This handbook will help you to incorporate the 4-H Science Checklist, 4-H Science Logic Model, 4-H Science Inquiry in Action Flow Chart, and 4-H Science Core Competencies into your programs.
• An Experiential Approach
 Oregon 4-H youth development professionals and volunteers are familiar with the 4-H experiential learning model. All 4-H project materials rely on this approach to create and reinforce learning.

4-H Experiential Model

1. EXPERIENCE the activity; perform, do it
2. SHARE the results, reactions, observations publicly
3. PROCESS by discussing, looking at the experience, analyze, reflect
4. GENERALIZE to connect the experience to real-world examples
5. APPLY what was learned to a similar or different situations

• Inquiry to Foster Creativity and Curiosity
 “Inquiry is a process that all individuals naturally use in approaching new situations and solving problems in life. By engaging in inquiry, …children…gain experience…that will improve their capacity to handle life situations and solve everyday problems.” (Edmund Marek and Ann Cavallo, 1997). Inquiry can happen in a variety of ways across 4-H programs. Ideas on encouraging inquiry and use of the Inquiry in Action Flow Chart (Appendix C) will be presented in Section 3 of this handbook.

• 4-H Science Logic Model
 The 4-H Science Logic Model articulates the opportunity to achieve science outcomes across 4-H education programs. It is provided in Appendix D. Outcomes happen at three levels. Short-term outcomes are those that happen immediately after an education experience such as knowledge gains. Intermediate or long-term outcomes happen after the learner has a chance to integrate their new knowledge into different actions.
2. 4-H Science Core Competencies: Eight Essential Elements

One framework for understanding youth development in 4-H is the eight essential elements. They provided the structure for development of the 4-H Science Core Competencies. The 4-H Science Core Competencies identify specific actions or behaviors of 4-H youth development workers and volunteers that create a positive atmosphere or context for learning. The four needs of youth to experience mastery, independence, belonging, and generosity are supported by the Eight Essential Elements of Positive Youth Development. These are item 3 on the 4-H Science Checklist. A 4-H Science Competency Self Assessment is provided in Appendix B.

Caring Adult (Belonging)
4-H youth development professionals and volunteers understand that each young person benefits from a positive relationship with a caring adult by:
1. Communicating the capacity of all youth to learn and experience success.
2. Being willing to learn alongside youth.
3. Being comfortable not having all the answers.
4. Demonstrating support for all youth.
5. Understanding and caring about youth and their families.
6. Appreciating the context in which youth and families live.

Safe Environment (Belonging)
4-H youth development professionals and volunteers create an emotionally and physically safe learning environment by:
1. Modeling strategies for conflict resolution.
2. Encouraging youth to share new ideas and different perspectives.
3. Modeling and facilitating how to give and receive constructive criticism.

Inclusive Environment (Belonging)
4-H youth development professionals and volunteers design inclusive learning environments by:
1. Promoting teamwork and cooperation.
2. Providing opportunities for youth to teach and learn from each other.
3. Demonstrating respect for others.
4. Fostering an environment of mutual respect for other.

See Oneself in the Future (Independence)
4-H youth development professionals and volunteers nurture an atmosphere of optimism and a positive belief in the future by:
1. Encouraging the belief that all youth can learn science or pursue science careers.
2. Creating a science-friendly learning environment.
3. Promoting science careers for all youth, regardless of their gender, race, or ethnicity.
4. Demonstrating how science can improve the world.
Values and Practices Service to Others (Generosity/ Mastery)

4-H youth development professionals and volunteers encourage an ethic of caring and civic responsibility by:

1. Helping youth connect to the community through service projects.
2. Encouraging empathy for others.
3. Engaging youth in real world science activities that consider the needs of others.
4. Understanding the positive and negative effects that science has on humans.

Opportunities for Self-Determination (Independence)

4-H youth development professionals and volunteers encourage and support independence in youth by:

1. Designing experiential, inquiry-based opportunities for youth to learn 4-H Science skills.
2. Challenging youth to explore new or different 4-H Science projects and areas of learning.
3. Supporting youth in achieving their goals in the face of setbacks.
4. Knowing how to foster an increasing development of skills in youth.

Opportunities for Mastery

4-H youth development professionals and volunteers provide opportunities for youth to develop skills, competence, and expertise by:

1. Designing experiential, inquiry-based opportunities for youth to learn 4-H Science skills.
2. Challenging youth to explore new or different 4-H Science projects and areas of learning.
3. Supporting youth in achieving their goals in the face of setbacks.
4. Knowing how to foster an increasing development of skills in youth.

Engagement in Learning (Mastery)

4-H youth development professionals and volunteers encourage youth to direct and manage their own learning by:

1. Assisting youth in setting realistic goals of their own choice.
2. Encouraging an inquiry approach to learning and exploration.
3. Providing sufficient time and an appropriate environment for thorough learning.
3. 4-H Science Inquiry in Action

The National Science Education Standards (1996) employ Science as Inquiry as a skill across all science content areas. Like life skills in traditional 4-H projects, the process of using inquiry supports content learning. Oregon’s 4-H Science Inquiry in Action Flowchart (Appendix C) shows the relationship between the 4-H Experiential Learning Model and the steps applied in science inquiry.

On the Inquiry in Action flowchart, note that the first two steps in the process are lead by the coach or leader. These are, “1. Determine what learners know or have observed. Identify knowledge gaps or misunderstandings.” and, “2. What do learners want to know? What questions do learners have?” These two steps are where the leader introduces the topic and engages the learners in using their inquiry process skills.

Learning to lead learner-centered, inquiry based activities can be a challenge for 4-H youth development professionals and volunteers who are more familiar with prescribed project activities which follow cookbook-like steps to a known outcome. With repeated application of the inquiry model – learning by doing – leaders and learners become familiar with the steps applied in science inquiry. Learners will soon take initiative and become engaged in designing their own learning experiences.

Steps 3 through 10 of the flowchart are intended to be primarily learner driven. For ease of management, youth can be put into teams to work on an inquiry activity. There are a variety of ways the leader can proceed with facilitating inquiry. In Guided Inquiry, learners are provided with a problem to investigate and the materials necessary to carry out the investigation. The learners devise their own procedure to solve the problem. The state 4-H project page for Science, Engineering and Technology (http://oregon.4h.oregonstate.edu/science-engineering-and-technology) has a link to ten videos that show examples of how to lead guided inquiry activities in a selection of 4-H projects.

A second way of facilitating is called Open Inquiry. The learners formulate their own problem to investigate and devise strategies to carry out their investigation (Steps 4-6). This can include determining which equipment to use to collect information from a selection provided and creating their own data chart to record information.

Science education can be improved by immersing learners in the process of using scientific knowledge to “do” science. Informal learning environments are ideal settings for learners to practice skills necessary for scientific inquiry. Experiential learning may be defined as learning based on personal experiences or direct observation. Experience and observation are key to the scientific inquiry process. An example of a project activity using inquiry will be presented next in this handbook.
4. An Example of a Science Rich 4-H Entomology Inquiry Activity

In this section, a lesson in the National 4-H Entomology Curriculum *Teaming with Insects* project book Level 1, for Grades 3-5, Activity 14: Chirp, Chirp, page 29, will be adapted to be Science Rich. This is how the lesson is presented in the project book:

Do It: Cricket Observations

Crickets are found around buildings and in fields and meadows. Sometimes you’ll find them by following their chirps. The speed (fast or slow) of their chirp depends on the temperature. You can collect crickets in the summer or do this activity anytime during the year if you buy crickets at a pet or bait store.

Tool Kit

- 3-5 crickets
- clear plastic container
- sand, potatoes or carrots
- water bottle and cotton ball

1. Collect or purchase 3 to 5 crickets. Make sure you have at least one male, since females do not chirp. (The female cricket has a long ovipositor on the end of her abdomen.) To collect your own crickets, do it in late summer or early fall when adult crickets appear. Use an insect net to gently capture crickets.
2. Place a shallow layer of sand in the bottom of a small, clear container. Punch small holes in the lid of the container so the crickets can breathe.
3. Place small pieces of potatoes or carrots in the container for the crickets to eat.
4. Place a small bottle filled with water and a cotton ball plug so the crickets have water. Place the crickets in the container and secure the lid.
5. Watch and listen to the crickets for five minutes, three times a day, for three days. Include day and night observations. Record what you see and hear.

Employing the 4-H Science Checklist

Remember, the 4-H Science Checklist (Appendix A) includes seven items that have been identified as the most critical components to include in a 4-H Science Program, so this is a good place to start when planning to teach a lesson.

Let’s look at the Science Abilities list. What abilities will youth practice in this lesson as written? (Observe, Collect data) This lesson is a *Guided Inquiry* activity. Much of the experimental design is prescribed so there is little opportunity for youth to design their own experience. Youth are told the number of crickets, type of housing, type of food and length of
observation. In addition, although the introductory information in italics notes that the speed of the cricket’s chirp changes with temperature, temperature is not part of the data youth are to collect and record. However, the facilitator’s guide does state youth should put their crickets in different temperatures.

Is there an opportunity to include more of the thirty possible science abilities? YES! Using the list of Science Abilities and the Inquiry in Action Flowchart an Open Inquiry experience that is more Science Rich can be created.

Reinventing the Activity

Beginning at step 1 on the Inquiry in Action flowchart, the coach will lead a discussion with youth about what they know about cricket habitats and behavior. Has anyone noticed that crickets chirp faster sometimes and slower at other times? What questions do learners have about crickets?

Note- when working with youth to set up the cricket containers, have them put holes only in the top of the box. Crickets have very sturdy mandibles and are able to chew through some kinds of plastic. Putting holes in the sides of boxes could allow the crickets an access point to begin to chew.

At step 3 of the Inquiry in Action flowchart, youth are to ask a question that can be answered through a scientific investigation. To assist youth to ask a question, have them identify all the things they might investigate about crickets. Youth could propose experiments with different materials in the box, such as gravel or leaf litter, instead of sand. They might study different foods or forms of providing liquid. They might change the number of days to observe. They might set up three identical cricket containers and put them in different locations with different temperatures. For some of these experiments the leaders will have to provide equipment in addition to the items listed under the Tool Kit heading for the lesson.

Before learners design experiments, step 4, lead a discussion to check for understanding of experimental design. In an experiment, the dependent variable is the event studied and expected to change when the independent variable is changed. Controlled variables are the things that are the same.

A team of youth might state their hypothesis, for example, as **“If** we provide chicken chow to three male crickets in a cricket container **then** they will chirp faster, and longer than three male crickets in a cricket container which are feed carrots.”

- Independent variables answer the question “What do we change?”
 - The types of food in each cricket container is the independent variable.
- Dependent variables answer the question “What do we observe?”
The speed of the chirps and the length of time the crickets chirp will be observed.

- Controlled variables answer the question “What do we keep the same?”
 - The cricket containers must both have the same materials in the bottom of the container, the same type of liquid dispenser, and be exposed to the same amount of light and the same temperature.

Learners can now move through steps 4 through 11 of the Inquiry in Action flow chart. Science Abilities they have an opportunity to use in Open Inquiry include Question, Infer, State a Problem, Predict, Hypothesize, Plan an Investigation, Cooperate, Test, Measure, Use Tools, Observe, Collect data, Organize, Summarize/Relate, Interpret/Analyze/Reason, Communicate, Compare and Redesign.

At step 10 on the flow chart the question is, “Are all Teams/Learners satisfied with the proposed analysis of findings?” If the answer is, “yes” they can move on to the next inquiry. If the answer is, “No,” the flowchart takes them up to step 12. At step 12 “Team re-designs question or asks a new question which can be explored through scientific investigation.” This is the cyclical nature of science. In formal education youth rarely have the chance to re-design a project. Allowing learning by trial and error supports the experiential model and gives youth control of their experience.

Note: If you are using store purchased crickets do not release them into a wild population. They should be frozen and disposed of after the activity.

Remember that item three on the 4-H Science Checklist is the Essential Elements. In this activity 4-H youth development professionals and volunteers can create a positive learning environment by being willing to learn alongside youth and by being comfortable not having all the answers.

An important skill for youth to practice as they learn to think and act like a scientist, is how to communicate ideas and discoveries. Youth have the opportunity to practice many of the science abilities on the 4-H Science Checklist by creating a Science Investigation Display for a 4-H fair event. A description of the fair class, the display requirements and the judging criteria are provided in the Science section of the State 4-H Fair book.

Reference

Appendix A

4-H Science Checklist

A “Science Ready” 4-H experience is a program that is framed in Science concepts, based on Science standards and intentionally targets the development of science abilities and the outcome articulated by the 4-H Science Logic Model. Additionally, it integrates the Essential Elements and engages participants in experiential and inquiry based learning. In addition to the following criteria below, it’s also recommended that science programs offer a sustained learning experience which offers youth the opportunity to be engaged in programs with relevant frequency and duration. Utilize the following checklist to self assess the program you deliver.

To meet the needs of children, youth and the nation with high-quality science, engineering and technology programs...

| ✅ | Are you providing science, engineering and technology programs based on National Science Education Standards - Science education standards are criteria to judge quality: the quality of what young people know and are able to do; the quality of the science programs that provide the opportunity for children and youth to learn science; the quality of science teaching; the quality of the system that supports science leaders and programs; and the quality of assessment practices and policies. http://www.nap.edu/readingroom/books/nses/ |
| ✅ | Are you providing children and youth opportunities to improve their Science Abilities? Predict, Hypothesize, Evaluate, State a Problem, Research Problem, Test, Problem Solve Design Solutions, Measure, Collect Data, Draw/Design, Build/Construct, Use Tools, Observe, Communicate, Organize, Infer, Question, Plan Investigation, Summarize/Relate, Invent/Implement Solutions, Interpret/Analyze/Reason, Categorize/Order/Classify, Model/Graph/Use Numbers, Troubleshoot, Redesign, Optimize, Collaborate, Compare |
Are you providing opportunities for youth to experience and improve in the Essential Elements of Positive Youth Development?

- Do youth get a chance at **mastery** – addressing and overcoming life challenges in your programs?
- Do youth cultivate **independence** and have an opportunity to see oneself as an active participant in the future?
- Do youth develop a sense of **belonging** within a positive group?
- Do youth learn to share a spirit of **generosity** toward others?

Are learning experiences led by trained, caring adult staff and volunteers acting as mentors, coaches, facilitators and co-learners who operate from a perspective that youth are partners and resources in their own development?

Are activities led with an experiential approach to learning?

Are activities using inquiry to foster the natural creativity and curiosity of youth?

Does your program target one or more of the outcomes on the 4-H Science Logic Model and have you considered the frequency and duration necessary for youth to accomplish those outcomes?
Appendix B- 4-H Science Competency Self Assessment

Please fill in the circle that tells you how much you are capable of using the knowledge and skills in each of these areas when you work with youth in 4-H Science programs.

<table>
<thead>
<tr>
<th>Caring Adult</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I use language of respect</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I listen to youth in a nonjudgmental way</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I demonstrate shared leadership through youth-adult partnerships</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I encourage youth to think about what they are learning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I make verbal contact with all youth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I encourage learners when they experience setbacks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I offer praise and encouragement when youth take initiative and leadership</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I identify, build on, and celebrate the potential of all youth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I respect youth of different talents, abilities, sexual orientations, and faiths</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusive Environment (Belonging)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I help youth feel welcome and part of a group</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I establish a climate of fairness and openness</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I respond positively to the ranges of youths' feelings</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I cultivate a sense of togetherness among youth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I value and act upon the ideas of others</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I serve as a role model for inclusion and tolerance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I initiate, sustain, and nurture group interactions and relationships</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safe Environment</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I conduct myself in a calm manner</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I reduce or eliminate physical and environmental hazards</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I re-emphasize ground rules related to conduct</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I intervene when safety demands it</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>See Oneself in the Future</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I project an optimistic, positive manner</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I reinforce the idea that all youth can succeed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I offer positive encouragement and support even in the face of setbacks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I talk about the future and youth's role in it</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
VALUES AND PRACTICES SERVICE TO OTHERS

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Sometimes</th>
<th>Usually</th>
<th>Most of the Time</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I encourage youth to contribute to the communities in which they live</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ji voice support for giving back to the community through service</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I believe in science's role in improving communities</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I provide opportunities for youth to link their experiences to citizenship</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I identify opportunities for youth to become civically engaged</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OPPORTUNITIES FOR SELF-DETERMINATION

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Sometimes</th>
<th>Usually</th>
<th>Most of the Time</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I provide experiences that encourage youth to share evidence</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I identify opportunities for youth to compare claims with each other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I articulate strategies for data collection and analysis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I work with youth to identify sources of information</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I actively consult, involve, and encourage youth to contribute to others</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I provide opportunities for youth to determine program expectations and direction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ENGAGEMENT IN LEARNING

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Sometimes</th>
<th>Usually</th>
<th>Most of the Time</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I guide youth in learning for themselves</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I create opportunities for problem solving via discussion, debate, and negotiation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I work with youth to establish appropriate goals for their age</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I provide opportunities for youth to link their experiences to the real world</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I use a variety of questioning and motivational approaches</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I use multiple learning approaches to meet learners' needs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

OPPORTUNITIES FOR MASTERY

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Sometimes</th>
<th>Usually</th>
<th>Most of the Time</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>I suggest challenges that can be explored by direct investigation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I encourage youth to make predictions</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I assist youth in developing hypotheses related to their investigations</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I allow youth to conduct formal and open-ended tests and experiments</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I have youth discuss their finding with each other and evaluate evidence critically</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I encourage youth to share their knowledge by teaching others and leading new activities</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I help youth see setbacks as opportunities for new explorations</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I support youth to set new goals, and try new ideas and approaches</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I provide opportunity for youth to use appropriate technology</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix C- Inquiry in Action Flowchart
4-H Science Inquiry Model

1. Determine what learners know or have observed. Identify knowledge gaps or misunderstandings.

2. What do learners want to know? What questions do learners have?

3. Team asks a question which can be explored through scientific investigation.

4. Team designs a simple scientific investigation.

5. Team selects appropriate equipment to collect data, designs a data sheet (if needed).

6. Team collects data and completes data sheet.

7. Team describes their investigation and their results.

8. Team thinks critically and logically to make the relationship between evidence and explanations and presents their analysis of the findings.

9. Through group discussion apply findings to everyday experiences or real-world examples.

10. Are all Teams/Learners satisfied with the proposed analysis of findings?

11A. Yes: Move on to the next inquiry.

11B. No.

Do

Share

Reflect

Apply
Appendix D- 4-H Science Logic Model
4-H Science Logic Model

<table>
<thead>
<tr>
<th>Situation</th>
<th>Inputs</th>
<th>Activities</th>
<th>Outputs</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of challenge, problem, or opportunity:</td>
<td>What we invest:</td>
<td>What we do:</td>
<td>What we produce:</td>
<td>Knowledge</td>
</tr>
<tr>
<td>- Unsolved worldwide social problems need to be addressed by science.</td>
<td>- Federal, state and private funds.</td>
<td>- Select and develop 4-H Science curricula</td>
<td>- 4-H Science curricula</td>
<td>Occurs when there is a change in knowledge or the participants learn:</td>
</tr>
<tr>
<td>- In the US, shortage of scientists & people understanding science.</td>
<td>- 4-H Infrastructure</td>
<td>- Select and train volunteers</td>
<td>- New instructional methods</td>
<td>- Increased awareness of science among youth</td>
</tr>
<tr>
<td>- Under-representation of women and minorities in science careers.</td>
<td>- Land Grant University Support</td>
<td>Market 4-H Science to increase participation</td>
<td>- Trained staff and volunteers</td>
<td>- Improved science skills (scientific methods) and knowledge (content areas) among youth</td>
</tr>
<tr>
<td>- Need a diverse pool of trained scientists to frame and solve problems & educate others.</td>
<td>- County Extension administrators and agents, program coordinators, and specialists</td>
<td>Conduct non-formal education (learning and teaching, facilitated inquiry and discovery)</td>
<td>- Adult participants engaged</td>
<td>- Increased awareness of opportunities to contribute to society using science skills</td>
</tr>
<tr>
<td>- General population in the US (& worldwide) lacks basic understanding of science methods and content ("science literacy")</td>
<td>- Training</td>
<td>- Facilitate question formation and problem solving through guided activities</td>
<td>- Youth participants engaged</td>
<td>- Increased life skills (self-efficacy) among youth</td>
</tr>
<tr>
<td></td>
<td>- Knowledge</td>
<td>- Provide or supplement math programming</td>
<td>- Partners (Other Federal agencies, science museums, youth organizations, etc.) collaborating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Collaborations with external researchers</td>
<td>- Teach youth about academic and career choices, requirements</td>
<td>- Marketing materials</td>
<td>- Evaluation materials</td>
</tr>
<tr>
<td></td>
<td>- Collaborations with science industry leaders</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Who we reach (Participation):
- Extension administrators, LGU and Extension faculty and staff
- Youth (grades 3-5, 6-8, 9-12)
- Federal, state & private funders
- Partners
- Public